31 research outputs found

    Strongly Hierarchical Factorization Machines and ANOVA Kernel Regression

    Full text link
    High-order parametric models that include terms for feature interactions are applied to various data mining tasks, where ground truth depends on interactions of features. However, with sparse data, the high- dimensional parameters for feature interactions often face three issues: expensive computation, difficulty in parameter estimation and lack of structure. Previous work has proposed approaches which can partially re- solve the three issues. In particular, models with factorized parameters (e.g. Factorization Machines) and sparse learning algorithms (e.g. FTRL-Proximal) can tackle the first two issues but fail to address the third. Regarding to unstructured parameters, constraints or complicated regularization terms are applied such that hierarchical structures can be imposed. However, these methods make the optimization problem more challenging. In this work, we propose Strongly Hierarchical Factorization Machines and ANOVA kernel regression where all the three issues can be addressed without making the optimization problem more difficult. Experimental results show the proposed models significantly outperform the state-of-the-art in two data mining tasks: cold-start user response time prediction and stock volatility prediction.Comment: 9 pages, to appear in SDM'1

    An Empirical Evaluation Of Social Influence Metrics

    Full text link
    Predicting when an individual will adopt a new behavior is an important problem in application domains such as marketing and public health. This paper examines the perfor- mance of a wide variety of social network based measurements proposed in the literature - which have not been previously compared directly. We study the probability of an individual becoming influenced based on measurements derived from neigh- borhood (i.e. number of influencers, personal network exposure), structural diversity, locality, temporal measures, cascade mea- sures, and metadata. We also examine the ability to predict influence based on choice of classifier and how the ratio of positive to negative samples in both training and testing affect prediction results - further enabling practical use of these concepts for social influence applications.Comment: 8 pages, 5 figure

    Toward Order-of-Magnitude Cascade Prediction

    Full text link
    When a piece of information (microblog, photograph, video, link, etc.) starts to spread in a social network, an important question arises: will it spread to "viral" proportions -- where "viral" is defined as an order-of-magnitude increase. However, several previous studies have established that cascade size and frequency are related through a power-law - which leads to a severe imbalance in this classification problem. In this paper, we devise a suite of measurements based on "structural diversity" -- the variety of social contexts (communities) in which individuals partaking in a given cascade engage. We demonstrate these measures are able to distinguish viral from non-viral cascades, despite the severe imbalance of the data for this problem. Further, we leverage these measurements as features in a classification approach, successfully predicting microblogs that grow from 50 to 500 reposts with precision of 0.69 and recall of 0.52 for the viral class - despite this class comprising under 2\% of samples. This significantly outperforms our baseline approach as well as the current state-of-the-art. Our work also demonstrates how we can tradeoff between precision and recall.Comment: 4 pages, 15 figures, ASONAM 2015 poster pape

    Fair Learning to Rank with Distribution-free Risk Control

    Full text link
    Learning to Rank (LTR) methods are vital in online economies, affecting users and item providers. Fairness in LTR models is crucial to allocate exposure proportionally to item relevance. The deterministic ranking model can lead to unfair exposure distribution when items with the same relevance receive slightly different scores. Stochastic LTR models, incorporating the Plackett-Luce (PL) model, address fairness issues but have limitations in computational cost and performance guarantees. To overcome these limitations, we propose FairLTR-RC, a novel post-hoc model-agnostic method. FairLTR-RC leverages a pretrained scoring function to create a stochastic LTR model, eliminating the need for expensive training. Furthermore, FairLTR-RC provides finite-sample guarantees on a user-specified utility using distribution-free risk control framework. By additionally incorporating the Thresholded PL (TPL) model, we are able to achieve an effective trade-off between utility and fairness. Experimental results on several benchmark datasets demonstrate that FairLTR-RC significantly improves fairness in widely-used deterministic LTR models while guaranteeing a specified level of utility.Comment: 13 pages, 4 figure
    corecore